Sodium ions as blocking agents and charge carriers in the potassium channel of the squid giant axon

نویسندگان

  • R J French
  • J B Wells
چکیده

Instantaneous K channel current-voltage (I-V) relations were determined by using internally perfused squid axons. When K was the only internal cation, the I-V relation was linear for outward currents at membrane potentials up to +240 mV inside. With 25-200 mM Na plus 300 mM K in the internal solution, an N-shaped I-V curve was seen. Voltage-dependent blocking of the K channels by Na produces a region of negative slope in the I-V plot (F. Bezanilla and C. M. Armstrong. 1972. J. Gen Physiol, 60: 588). At higher voltages (greater than or equal to 160 mV) we observed a second region of increasing current and a decrease in the fraction of the K conductance blocked by Na. Internal tetraethylammonium (TEA) ions blocked currents over the whole voltage range. In a second series of experiments with K-free, Na-containing internal solutions, the I-V curve turned sharply upward about +160 mV. The current at high voltages increased with increasing internal Na concentration was largely blocked by internal TEA. These data suggest that the K channel becomes substantially more permeable to Na at high voltages. This change is apparently responsible for the relief, at high transmembrane voltages, of the blocking effect seen in axons perfused with Na plus K mixtures. Each time a Na ion passed through, vacating the blocking site, the channel would transiently allow K ions to pass through freely.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of internal anions with potassium channels of the squid giant axon

The interaction of internal anions with the delayed rectifier potassium channel was studied in perfused squid axons. Changing the internal potassium salt from K+ glutamate- to KF produced a reversible decline of outward K currents and a marked slowing of the activation of K channels at all voltages. Fluoride ions exert a differential effect upon K channel gating kinetics whereby activation of I...

متن کامل

Coupling and Selectivity of Sodium and Potassium Transport in Squid Giant Axons

O u r purpose in this paper is to present some experimental findings that have a bear ing on the t ransport of sodium a nd potassium across the m e m b r a n e of the squid giant axon. As in a variety of cellular types that actively t ranspor t sodium ions, a marked drop in the efflux of sodium ions from squid g iant axons occurs when potassium ions are removed from the external solution (Caldw...

متن کامل

Effects of the dipolar form of phloretin on potassium conductance in squid giant axons.

The effects of phloretin on membrane ionic conductances have been studied in the giant axon of the squid, Loligo pealei. Phloretin reversibly suppresses the potassium and sodium conductances and modifies their dependence on membrane potential (Em). Its effects on the potassium conductance (GK) are much greater than on the sodium conductance; no effects on sodium inactivation are observed. Inter...

متن کامل

Effects of External Ions on Membrane Potentials of a Lobster Giant Axon

The effects of varying external concentrations of normally occurring cations on membrane potentials in the lobster giant axon have been studied and compared with data presently available from the squid giant axon. A decrease in the external concentration of sodium ions causes a reversible reduction in the amplitude of the action potential and its rate of rise. No effect on the resting potential...

متن کامل

The compensation of potential changes produced by trivalent erbium ion in squid giant axon with applied potentials.

The transmembrane potential of voltage-clamped squid giant axon is increased to compensate for a reduction in the rate of potassium channel kinetics when artificial seawater with trivalent erbium ion is substituted for artificial seawater. The additional potential required to produce an equivalent rise time is a measure of the potential shift produced by the erbium ions. When the kinetics of K+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 70  شماره 

صفحات  -

تاریخ انتشار 1977